Cambridge
International
AS \& A Level

## Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

## CANDIDATE NAME

CENTRE NUMBER


## CHEMISTRY

9701/03
Paper 3 Advanced Practical Skills
For Examination from 2016
SPECIMEN PAPER

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

## READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
A Periodic Table is printed on page 12.
At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |  |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| Total |  |

1 Rates of reaction can be investigated by observing the volume of gas evolved in a reaction over time. In this experiment the reaction will be between calcium carbonate, $\mathrm{CaCO}_{3}$, in the form of small marble chips, and dilute hydrochloric acid, HCl . The equation for the reaction is given below.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

FA 1 is approximately 1.0 g calcium carbonate, $\mathrm{CaCO}_{3}$.
FA 2 is approximately $2 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl .

## (a) Method

## Read through the whole method before starting any practical work.

- Fill the trough with water to a depth of about 8 cm .
- Fill the $250 \mathrm{~cm}^{3}$ measuring cylinder completely with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it under the water in the trough.
- Remove the paper towel and clamp the inverted measuring cylinder so the open end is just above the base of the trough.
- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to transfer $15 \mathrm{~cm}^{3}$ of FA 2 into the conical flask.
- Check that the bung with delivery tube fits tightly in the neck of the conical flask and place the other end of the delivery tube under and in to the inverted large measuring cylinder. Remove the bung from the neck of the flask.
- Weigh the container with FA 1 and record the mass in the space below.
- Tip all of FA 1 into the conical flask, replace the bung immediately and start the stop clock as soon as possible. Swirl the flask to mix the contents.
- Record the volume of gas in the measuring cylinder every minute for 10 minutes in the table below. Do not remove the bung.
- Reweigh the empty container and record the mass and the mass of FA 1 used in the space below.


## Results

## Mass

## Gas volumes

| time / minutes | gas volume $/ \mathrm{cm}^{3}$ |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |


| time / minutes | gas volume $/ \mathrm{cm}^{3}$ |
| :---: | :---: |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |

(b) (i) Plot a graph of volume of gas against time.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | - |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | - |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

(ii) Draw a line of best fit through the points. Circle or label any points you consider anomalous.
(iii) The rate of reaction at any point may be determined by calculating the gradient of the tangent to the curve at that point. Select a point on your graph, draw the tangent and calculate its gradient. Show your working.

> rate of reaction at the point selected =
$\qquad$ $\mathrm{cm}^{3}$ minute $^{-1}[2]$
(iv) What can be deduced about changes in the rate of reaction as the reaction progresses from the shape of the line of best fit? Explain fully how one factor causes this change in the rate.
$\qquad$
$\qquad$
$\qquad$
(c) A student carrying out this experiment stated there were too many inaccuracies in the experimental procedure for numerical values of the rate of reaction to be valid.

Suggest and explain the effect of one inaccuracy which occurred in the method you were instructed to carry out in (a). Suggest how to improve the method to eliminate or reduce this inaccuracy.
inaccuracy $\qquad$
$\qquad$
$\qquad$
improvement $\qquad$
$\qquad$
$\qquad$
[Total: 13]

Question 2 begins on the next page.

2 The exact concentration of the hydrochloric acid used in Question 1 may be found by titration using a solution of an alkali such as sodium hydroxide. You will dilute the acid and then titrate the diluted solution against sodium hydroxide of known concentration.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

FA 2 is approximately $2 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl
FA 3 is 0.100 moldm $^{-3}$ sodium hydroxide, NaOH methyl orange indicator
(a) Method
(i) Dilution of the acid

- Fill the burette with undiluted hydrochloric acid, FA 2.
- Run between 9 and $12 \mathrm{~cm}^{3}$ of FA 2 into the $250 \mathrm{~cm}^{3}$ volumetric (graduated) flask. Record your burette readings and the exact volume of FA 2 used in the space below.

The volume of FA 2 used is $\qquad$ $\mathrm{cm}^{3}$. [1]

- Add distilled water to the volumetric flask to make the total volume $250 \mathrm{~cm}^{3}$.
- Stopper the flask and mix the contents thoroughly.
- This diluted hydrochloric acid is FA 4.
(ii) Titration
- Rinse the burette then fill it with FA 4.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 3 into a conical flask.
- Add about 3 drops of methyl orange indicator.
- Perform a rough titration and record your burette readings in the space below.
$\qquad$ $\mathrm{cm}^{3}$.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FA 4 added in each accurate titration.
(b) From your accurate titration results, obtain a suitable value to be used in your calculations. Show clearly how you obtained this result.
$25.0 \mathrm{~cm}^{3}$ of FA 3 required $\qquad$ $\mathrm{cm}^{3}$ of FA 4. [1]


## (c) Calculation

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the number of moles of sodium hydroxide in $25.0 \mathrm{~cm}^{3}$ of FA 3.

$$
\text { moles of } \mathrm{NaOH}=
$$

$\qquad$ mol

Hence calculate the number of moles of hydrochloric acid present in the volume of FA 4 in (b).
moles of HCl in (b) $=$ $\qquad$ mol [1]
(ii) Use your answer to (i) to calculate the number of moles of hydrochloric acid present in the $250 \mathrm{~cm}^{3}$ volumetric flask.
moles of HCl in the $250 \mathrm{~cm}^{3}$ volumetric flask $=$ $\qquad$ mol [1]
(iii) Use your answer to (ii) and the volume of FA 2 diluted in (a) to calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of hydrochloric acid in FA 2.
concentration of hydrochloric acid in FA 2 = $\qquad$ $\mathrm{moldm}^{-3}$ [1]
(iv) Make sure your answers to (c)(i) to (c)(iii) are given to an appropriate number of significant figures.

## 3 Qualitative analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
Marks are not given for chemical equations.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test the full name or correct formula of the reagent must be given.
(a) You are provided with solution FA 5. FA 5 is an aqueous mixture of two salts and contains two cations and two anions. Carry out the following tests and complete the table below.

| test |  |
| :--- | :--- |
| To a 1 cm depth of FA 5 in a <br> test-tube, add aqueous sodium <br> hydroxide. |  |
| To a 1 cm depth of FA 5 in a <br> test-tube, add aqueous ammonia. |  |
| To a 1 cm depth of FA 5 in a <br> test-tube, add a 2 cm depth of <br> dilute sulfuric acid, shake, and <br> leave for about 1 minute, |  |
| then add aqueous potassium <br> manganate(VII) drop by drop. |  |
| To a 1 cm depth of FA 5 in a <br> test-tube, add a 1 cm depth of <br> aqueous potassium iodide, |  |
| followed by a few drops of starch <br> indicator. |  |

(b) FA 5 contains either or both a sulfate and/or a chloride. Select reagents and use them to carry out further tests on FA 5 to positively identify which of these anions is present.
reagents and

Record your tests and all your observations in a suitable form in the space below.
(c) Use your observations in (a) and (b) to suggest the identities of as many ions present in FA 5 as possible. Give reasons for your deductions for one cation and one anion.
possible cation(s)
reasons(s) $\qquad$
$\qquad$
possible anion(s) $\qquad$
reasons(s) $\qquad$
[Total: 13]

## Qualitative Analysis Notes

Key: [ppt. = precipitate]

## 1 Reactions of aqueous cations

| ion | reaction with |  |
| :---: | :---: | :---: |
|  | $\mathrm{NaOH}(\mathrm{aq})$ | $\mathrm{NH}_{3}(\mathrm{aq})$ |
| aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$ | white ppt. soluble in excess | white ppt. insoluble in excess |
| ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$ | no ppt. ammonia produced on heating | - |
| barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$ | no ppt. (if reagents are pure) | no ppt. |
| calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$ | white ppt. with high [ $\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$ | no ppt. |
| chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$ | grey-green ppt. soluble in excess giving dark green solution | grey-green ppt. insoluble in excess |
| $\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$ | pale blue ppt. insoluble in excess | blue ppt. soluble in excess giving dark blue solution |
| $\begin{array}{\|l\|} \hline \text { iron(II), } \\ \mathrm{Fe}^{2+}(\mathrm{aq}) \end{array}$ | green ppt. turning brown on contact with air insoluble in excess | green ppt. turning brown on contact with air insoluble in excess |
| $\begin{array}{\|l\|} \hline \text { iron(III) } \\ \mathrm{Fe}^{3+}(\mathrm{aq}) \end{array}$ | red-brown ppt. insoluble in excess | red-brown ppt. insoluble in excess |
| magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$ | white ppt. insoluble in excess | white ppt. insoluble in excess |
| $\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$ | off-white ppt. rapidly turning brown on contact with air insoluble in excess | off-white ppt. rapidly turning brown on contact with air insoluble in excess |
| $\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$ | white ppt. soluble in excess | white ppt. soluble in excess |

## 2 Reactions of anions

| ion | reaction |
| :---: | :---: |
| carbonate, $\mathrm{CO}_{3}{ }^{2-}$ | $\mathrm{CO}_{2}$ liberated by dilute acids |
| chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$ | gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$ ) |
| bromide, <br> $\mathrm{Br}^{-}(\mathrm{aq})$ | gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$ ) |
| iodide, <br> $\mathrm{I}^{-}(\mathrm{aq})$ | gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ ( insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$ ) |
| nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$ | $\mathrm{NH}_{3}$ liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil |
| nitrite, $\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$ | $\mathrm{NH}_{3}$ liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown $\mathrm{NO}_{2}$ in air) |
| sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ | gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids) |
| sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$ | $\mathrm{SO}_{2}$ liberated on warming with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids) |

## 3 Tests for gases

| gas | test and test result |
| :--- | :--- |
| ammonia, $\mathrm{NH}_{3}$ | turns damp red litmus paper blue |
| carbon dioxide, $\mathrm{CO}_{2}$ | gives a white ppt. with limewater <br> (ppt. dissolves with excess $\mathrm{CO}_{2}$ ) |
| chlorine, $\mathrm{Cl}_{2}$ | bleaches damp litmus paper |
| hydrogen, $\mathrm{H}_{2}$ | "pops" with a lighted splint |
| oxygen, $\mathrm{O}_{2}$ | relights a glowing splint |
| sulfur dioxide, $\mathrm{SO}_{2}$ | turns acidified aqueous potassium manganate(VII) from purple to <br> colourless |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements
© UCLES 2014 9701/03/SP/16

| Group |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Key |  |  |  |  |  |  |  |  |  | 13 | 14 | 15 | 16 | 17 | 18 |
|  |  |  |  |  |  |  | 1 <br> H <br> hydrogen 1.0 | $\begin{array}{llll}9 & 10 & 11\end{array}$ |  |  |  |  |  |  |  |  | 2 He helium 4.0 |
| $\begin{gathered} \hline 3 \\ \mathrm{Li} \\ \text { lithium } \\ 6.9 \end{gathered}$ |  | atomic number atomic symbol <br> name relative atomic mass |  |  |  | 7 | 89 |  | $\begin{gathered} 5 \\ B \\ \text { boron } \\ 10.8 \end{gathered}$ | $\begin{gathered} 6 \\ \text { C } \\ \text { carbon } \\ 12.0 \end{gathered}$ |  | $\begin{gathered} 8 \\ \text { O } \\ \text { oxygen } \\ 16.0 \end{gathered}$ | $\begin{gathered} 9 \\ F \\ \text { fluorine } \\ 19.0 \end{gathered}$ | $\begin{aligned} & \hline 10 \\ & \mathrm{Ne} \\ & \text { neon } \\ & 20.2 \end{aligned}$ |
| $11$ <br> Na <br> sodium $23.0$ | $\begin{gathered} \hline 12 \\ \mathrm{Mg} \\ \text { magnesium } \\ 24.3 \end{gathered}$ | 3 | $4$ | 5 | 6 |  |  |  |  |  |  |  | 13 <br> Al <br> aluminium $27.0$ | $\begin{gathered} \hline 14 \\ \mathrm{Si} \\ \text { silicon } \\ 28.1 \end{gathered}$ | $\begin{array}{\|c\|} \hline 15 \\ \mathrm{P} \\ \text { phosphorus } \\ 31.0 \end{array}$ | $\begin{gathered} 16 \\ \mathrm{~S} \\ \text { sulfur } \\ 32.1 \end{gathered}$ | 17 <br> Cl <br> chlorine $35.5$ | $\begin{gathered} \hline 18 \\ \mathrm{Ar} \\ \text { argon } \\ 39.9 \end{gathered}$ |
| 19 K potassium 39.1 | $\begin{gathered} 20 \\ \mathrm{Ca} \\ \text { calcium } \\ 40.1 \end{gathered}$ | 21 <br> Sc <br> scandium 45.0 | $\begin{gathered} \hline 22 \\ \mathrm{Ti} \\ \text { titanium } \\ 47.9 \\ \hline \end{gathered}$ | 23 V vanadium 50.9 |  | 25 Mn manganese 54.9 | $\begin{gathered} \hline 26 \\ \text { Fe } \\ \text { iron } \\ 55.8 \end{gathered}$ |  |  |  |  | $\begin{gathered} 27 \\ \text { Co } \\ \text { cobalt } \\ 58.9 \end{gathered}$ | $\begin{gathered} \hline 28 \\ \mathrm{Ni} \\ \text { nickel } \\ 58.7 \end{gathered}$ | $\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { copper } \\ 63.5 \end{gathered}$ | $\begin{gathered} 30 \\ \mathrm{Zn} \\ \text { zinc } \\ 65.4 \end{gathered}$ | $\begin{gathered} 31 \\ \text { Ga } \\ \text { gallium } \\ 69.7 \end{gathered}$ | 32 Ge germanium 72.6 | $\begin{gathered} 33 \\ \text { As } \\ \text { arsenic } \\ 74.9 \end{gathered}$ |  |  | $\begin{gathered} \hline 36 \\ \mathrm{Kr} \\ \text { krypton } \\ 83.8 \\ \hline \end{gathered}$ |
|  | $\begin{gathered} \hline 38 \\ \mathrm{Sr} \\ \text { strontium } \\ 87.6 \end{gathered}$ | $\begin{gathered} \hline 39 \\ Y \\ \text { y ytrium } \\ 88.9 \end{gathered}$ | $\begin{gathered} 40 \\ \mathrm{Zr} \\ \text { zirconium } \\ 91.2 \end{gathered}$ | 41 Nb <br> niobium $92.9$ | 42 Mo molybdenum 95.9 | technetium <br> - | $44$ <br> Ru <br> ruthenium $101.1$ | $45$ <br> Rh <br> rhodium $102.9$ | $\begin{gathered} \hline 46 \\ \text { Pd } \\ \text { palladium } \\ 106.4 \end{gathered}$ | $\begin{gathered} \hline 47 \\ \mathrm{Ag} \\ \text { silver } \\ 107.9 \end{gathered}$ | 48 <br> Cd <br> cadmium $112.4$ | $\begin{gathered} \hline 49 \\ \text { In } \\ \text { indium } \\ 114.8 \end{gathered}$ | $\begin{gathered} \hline 50 \\ \mathrm{Sn} \\ \operatorname{tin} \\ 118.7 \end{gathered}$ | 51 <br> Sb <br> antimony $121.8$ | 52 <br> Te <br> tellurium 127.6 | $\begin{gathered} 53 \\ \text { I } \\ \text { iodine } \\ 126.9 \end{gathered}$ | $\begin{gathered} \hline 54 \\ \text { Xe } \\ \text { xenon } \\ 131.3 \end{gathered}$ |
|  | 56 $B a$ <br> barium 137.3 | $57-71$ <br> lanthanoids | 72 <br> Hf <br> hafnium <br> 178.5 | 73 <br> Ta <br> tantalum <br> 180.9 |  | $75$ <br> Re <br> rhenium 186.2 | $\begin{gathered} 76 \\ \text { Os } \\ \text { osmium } \\ 190.2 \end{gathered}$ | $\begin{gathered} 77 \\ \mathrm{Ir} \\ \text { iridium } \\ 192.2 \end{gathered}$ | $\begin{gathered} \hline 78 \\ \mathrm{Pt} \\ \text { platinum } \\ 195.1 \end{gathered}$ | $\begin{gathered} 79 \\ \mathrm{Au} \\ \text { gold } \\ 197.0 \end{gathered}$ | $\begin{gathered} 80 \\ \mathrm{Hg} \\ \text { mercury } \\ 200.6 \end{gathered}$ | $\begin{gathered} 81 \\ \text { Tl } \\ \text { thallium } \\ 204.4 \end{gathered}$ | $\begin{gathered} 82 \\ \mathrm{~Pb} \\ \text { lead } \\ 207.2 \end{gathered}$ | $\begin{gathered} 83 \\ \mathrm{Bi} \\ \text { bismuth } \\ 209.0 \end{gathered}$ |  |  | 86 <br> Rn <br> radon <br> - |
|  | radium | $\begin{gathered} \text { 89-103 } \\ \text { actinoids } \end{gathered}$ | 104 <br> Rf <br> rutherfordium |  | $106$ Sg <br> seaborgium $\qquad$ | $107$ <br> Bh <br> bohrium <br> - | 108 <br> Hs <br> hassium <br> - | 109 <br> Mt <br> meitnerium <br> - | 110 <br> Ds <br> darmstadtium <br> - | 111 <br> Rg <br> roentgenium <br> - | 112 <br> Cn <br> copernicium <br> - |  | 114 Fl <br> flerovium <br> - |  | $116$ Lv <br> livermorium |  |  |

lanthanoids
actinoids

| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { lanthanum }}{\mathrm{La}}$ $138.9$ | Ce cerium 140.1 | Pr <br> $\substack{\text { praseodymium } \\ 140.9}$ | Nd neodymium 144.4 | Pm promethium | Sm <br> samarium 150.4 | Eu europium 152.0 | Gd gadolinium 157.3 | Tb terbium 158.9 | Dy dysprosium 162.5 | Ho holmium 164.9 | Er erbium 167.3 | Tm thulium 168.9 | Yb ytterbium 173.1 | Lu lutetium 175.0 |
| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Ac <br> actinium | Th thorium 232.0 | $\underset{\text { protactinium }}{\mathrm{Pa}}$ | $\underset{\substack{\text { uranium } \\ 238.0}}{U}$ | Np neptunium | Pu plutonium | Am americium | Cm <br> curium | Bk <br> berkelium <br> - | Cf californium | Es <br> einsteinium | Fm <br> fermium | Md mendelevium mendele | No nobelium | Lr <br> lawrencium |

